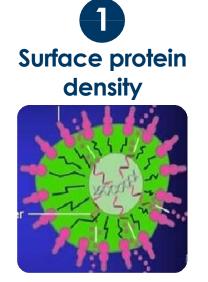
Anticorpos Conjugados à Droga em Câncer de Mama Triplo Negativo

Debora de Melo Gagliato

Oncologista Clínica Centro da Beneficência Portuguesa de São Paulo Especialista em Câncer de Mama pelo MD Anderson Cancer Center, the University of Texas

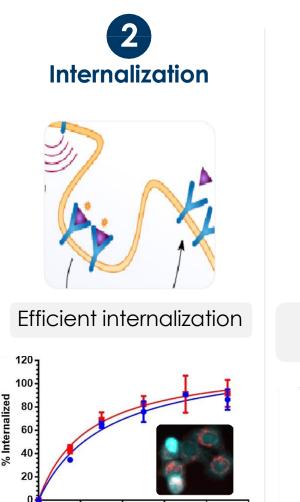

> A Beneficência Portuguesa de São Paulo

Anatomy and Mechanism of action of ADCs

Antibody Drug Conjugate Pharmacology PK/PD, Kd, Tox Antibody Target binding Target intensity / Internalization Payload density • Fc Effector functions Warhead MoA Lysosomes Linker containing proteases such as Catheosin-B & Plasmir Stability/payload Internalization release kinetics • DAR Payload • Multiple mechanisms a contraction of the second 6 Lysosomal trafficking

Yao, X et.al. Int J Cancer. 2013 December 15; 133(12): 2925–2933 Cell Signaling Tech. surface proteomics database, patient samples

Considerations for choosing optimal ADC targets


• High target density for solid tumors

HER2:1.2x10 - 200,0001 FOLR: 300,000² **TROP2**: 250,000³

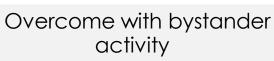
• Lineage-restricted targets for heme

¹ https://doi.org/10.1373/clinchem.2017.274266 ² Yao, X et.al. Int J Cancer. 2013 December 15: 133(12): 2925-2933

³ Cell Signaling Tech. surface proteomics database, patient samples

20

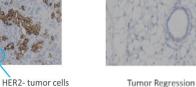
40


Time (min)

60

80

100



Control

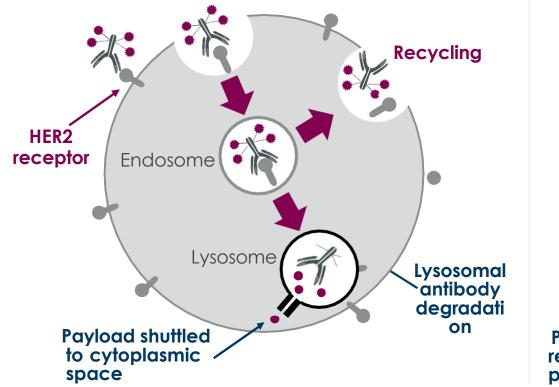
HER2+ tumor cells

NCI-N87

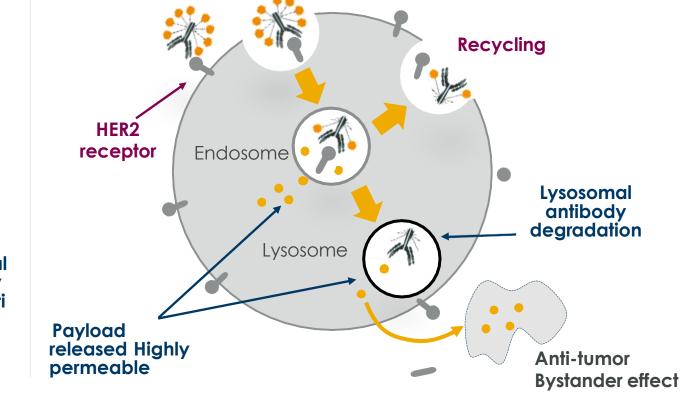


Ogitani Y et al. 2016. Cancer Science 1077: 1039-1046

MDA-MB-468


MED

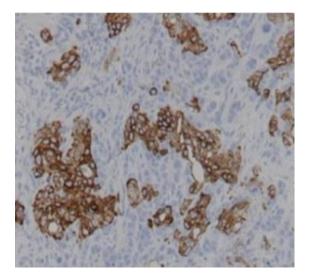
MED


Novo ADC (T-DXd) versus T-DM1

Unlike T-DM1, T-DXd is cleaved by cathepsin in endosomes and is highly permeable

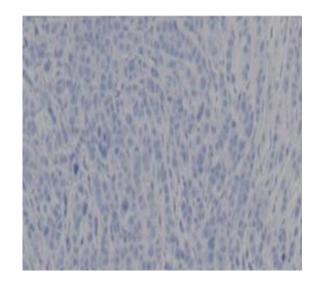
T-DM1: non-cleavable linker¹⁻³

T-DXd: cleavable linker¹⁻³


Bystander effect dos ADCs em neoplasias heterogêneas

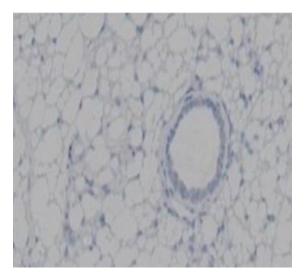
In vivo bystander effect of DS-8201a vs T-DM1 after 14 days of treatment

Control


T-DM1,10 mg/kg

Co-culture of HER2+ and HER2- tumors in vivo

HER2+HER2-cells NCI-cellsN87MDA-MB-468


HER2- cells still persist

HER2cells MDA-MB-468

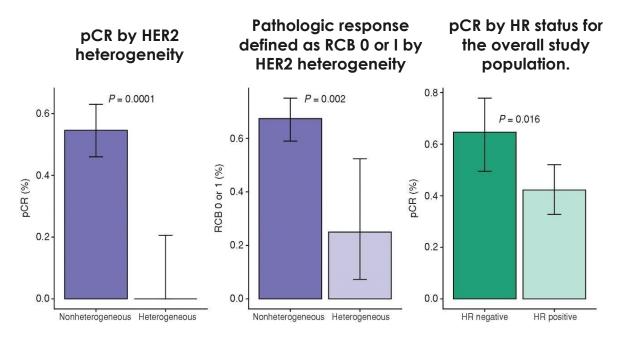
DS-8201a, 3.0 mg/kg

Both HER2+ and HER2are impacted

Tumor regression

T-DM1 e heterogeneidade tumoral

Definição de heterogeneidade de HER2

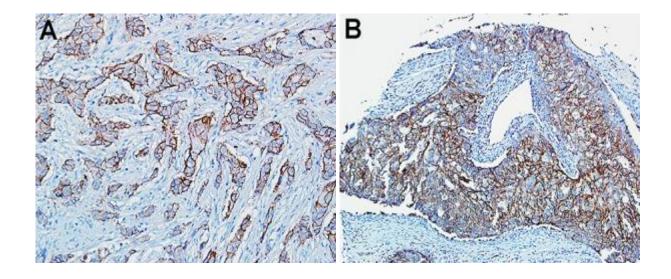

 Área com amplificação de ERBB2 em > 5% mas < 50% das células tumorais

OU

Área HER2 negativa detectadas por FISH


T-DM1 showed pathological complete responses only in tumors with homogeneous HER2 expression

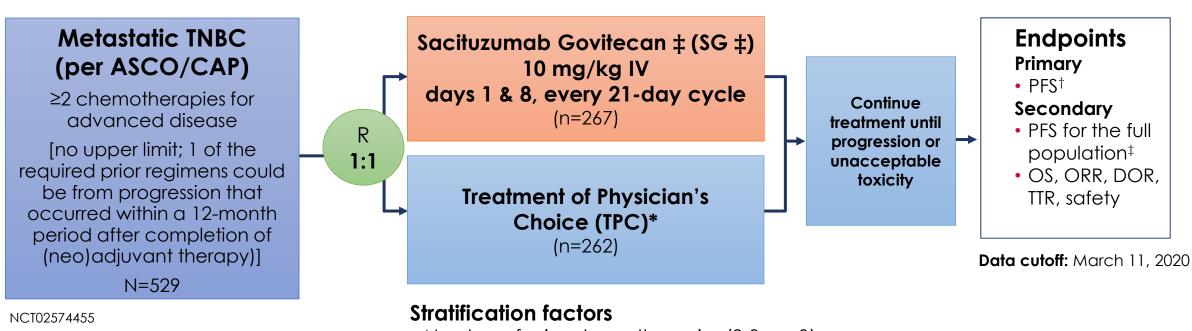
T-DM1 IS ONLY EFFICACIOUS IN HOMOGENEOUS TUMORS



ADCs anti Trop 2 Sacituzumabe Govitecan

Superexpressão de Trop-2 em CMTN

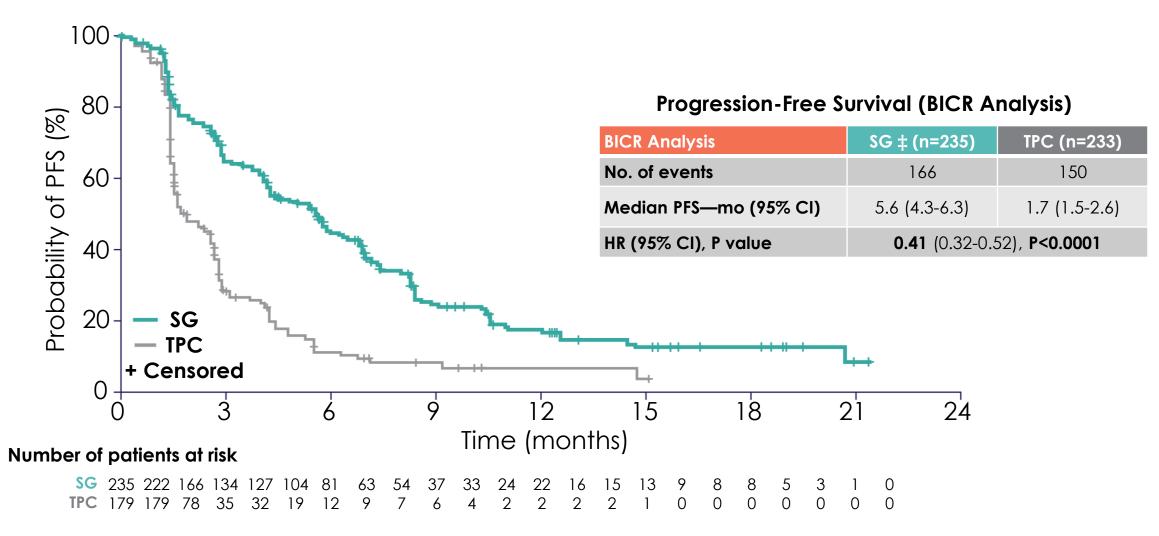
Strong (3+) Trop-2 expression in two TNBC specimens within a tumor microarray²



High Trop-2 overexpression rate with predominantly moderate to strong intensity of IHC staining suggests that pretherapy biomarker assessment for TNBC patient selection is not required.¹

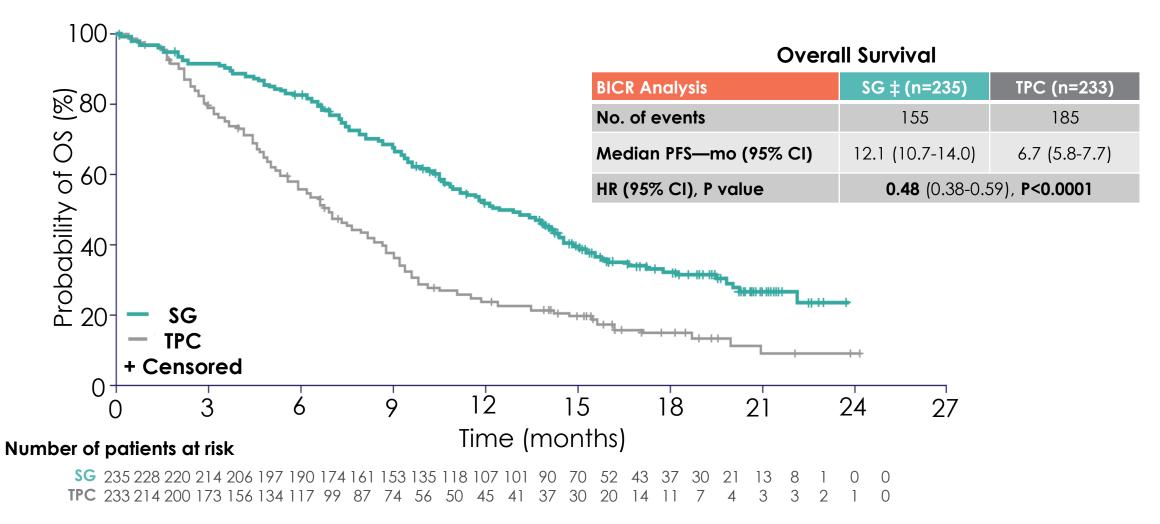
^a immunohistochemistry (IHC) scores of archival samples from SG ‡-treated patients: A total of 48 patients had archival tumors (60% primary tumors, 40% miscellaneous metastases) evaluated for Trop-2 expression by IHC; ^bIHC scoring was based on staining intensity of >10% of the tumor cells within the specimen: strong (3+), moderate (2+), weak (1+), or absent (negative). If <10% of the tumor cells were positive, sample was scored as negative, irrespective of score. IHC, immunohistochemistry; NSCLC, non-small cell lung cancer; TNBC, triple-negative breast cancer; Trop-2, trophoblast cell surface antigen-2; UC, urothelial cancer.

1. Bardia A, et al. J Clin Oncol 35:2141, 2017; 2. Goldenberg DM, et al. Oncotarget 6:22496, 2015.

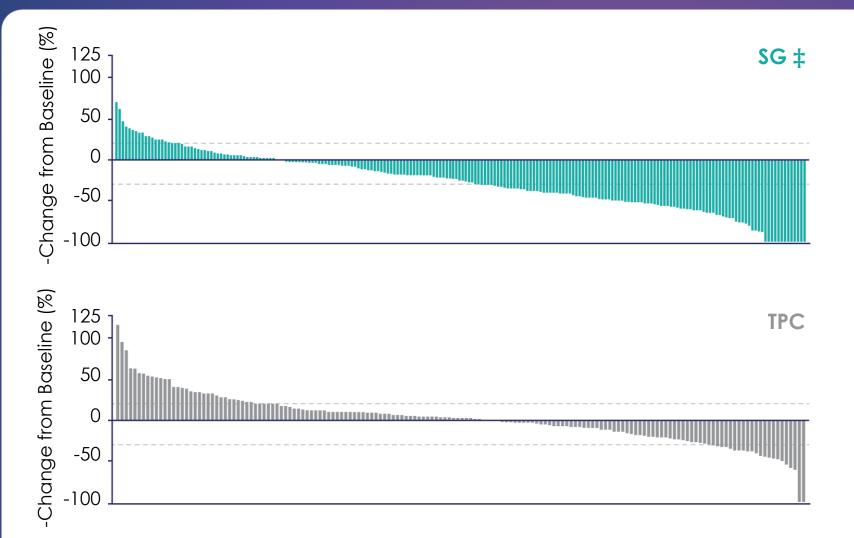

ASCENT: Study Design

- Number of prior chemotherapies $(2-3 \lor s > 3)$
- Geographic region (North America vs Europe)
- Presence/absence of known brain metastases (yes/no)

*Eribulin, vinorelbine, gemcitabine, or capecitabine


Progression-Free Survival

ADC, antibody-drug conjugate; BICR, blinded independent central review; HR, hazard ratio; mTNBC, metastatic triple-negative breast cancer; PFS, progression-free survival; SG ‡, Sacituzumab Govitecan ‡; TPC, treatment of physician's choice; Trop-2, trophoblast cell-surface antigen 2.

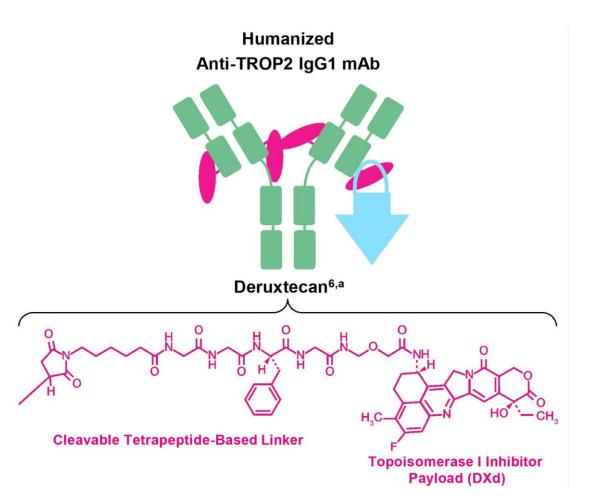

Bardia A, et al. ESMO 2020. Oral LBA17.

Overall Survival

HR, hazard ratio; mTNBC, metastatic triple-negative breast cancer; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; SG ‡, Sacituzumab Govitecan ‡; TPC, treatment of physician's choice; Trop-2, trophoblast cell-surface antigen 2.

Overall Response Rate

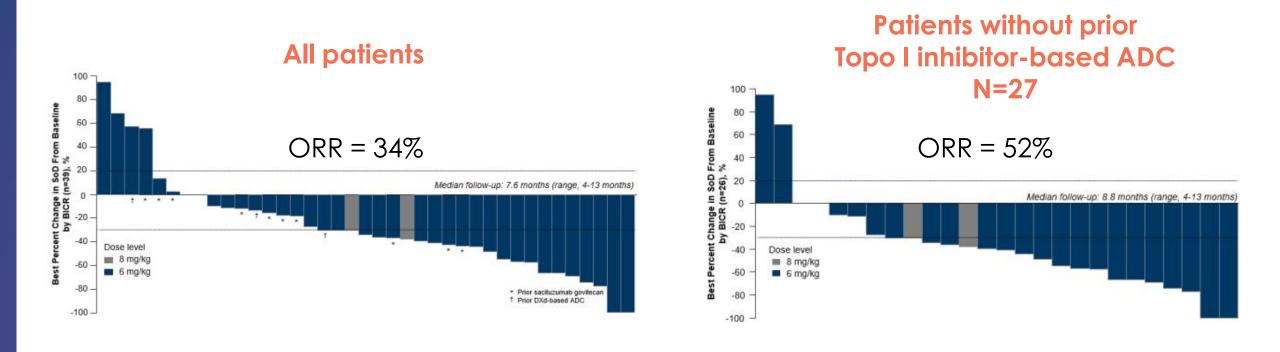
	SG ‡ (n=235)	TPC (n=233)	
ORR—no. (%)	82 (35)	11 (5)	
P-value	<0.00	<0.0001	
CR	10 (4)	2 (1)	
PR	72 (31)	9 (4)	
CBR—no. (%)	105 (45)	20 (9)	
P-value	<0.00	001	
Median DOR —mo (95%Cl)	6.3 (5.5-9.0)	3.6 (2.8−NE)	
P-value	0.0	0.057	


BICR, blind independent central review; CBR, clinical benefit rate (CR + PR + SD ≥6 mo); CR, complete response; DOR, duration of response; ORR, objective response rate; PR, partial response; SG ‡, Sacituzumab Govitecan ‡; TPC, treatment of physician's choice; TTR, time to response.

Bardia A, et al. ESMO 2020. Oral LBA 17.

ADCs anti Trop 2 Datopotamabe Govitecan

Datopotamab Deruxtecan: Trop-2 Directed ADC


- Dato-DXd is a differentiated TROP2-directed ADC designed with 3 components^{2,3}:
 - A humanized anti-TROP2 IgG14 mAb
 - A topoisomerase I inhibitor payload (exatecan derivative, DXd)
 - A tetrapeptide-based cleavable linker
- 6 mg/kg has been selected as the dose for expansion into Other advanced tumor types

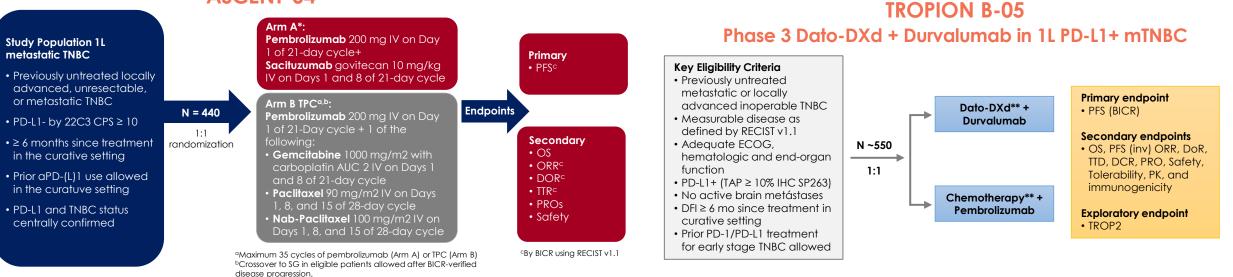
ADC, antibody drug conjugate; AE, adverse event; IgG1, immunoglobulin G1; mAB, monoclonal antibody; NSCLC, non-small cell lung câncer; TNBC, triple negative breast cancer; TROP2, trophoblast cell surface antigen. ^aActual drug positions mayr vary

 Bardia A, et al. ESMO 2020 [Abstract LBA17]; 2. Okajima D, et al. AACR-NCI-EORTEC 2019 [Abstract C026]; 3. Nakada T, et al. Chem Pham Bull (Tokyo). 2019;67(3):173-185;
Daiichi Sankyo Co. Ltd. Accessed October 6, 2020. https://www.daiichisankyo.com/media_investors/investor_relations/ir_calendar/files/005438/DS-1062%20Seminar%20Slides_EN.pdf7; 5. Spira A et al. WCLC 2020 [Abstract 3407]; 6. Krop I, et al. SABCS 2019 [Abstract GS1-03]

TROPION-PanTumor01: Datopotamab in TNBC Cohort

Median prior lines of therapy = 3 Prior Topo1 inhibitor-based ADC= 30%

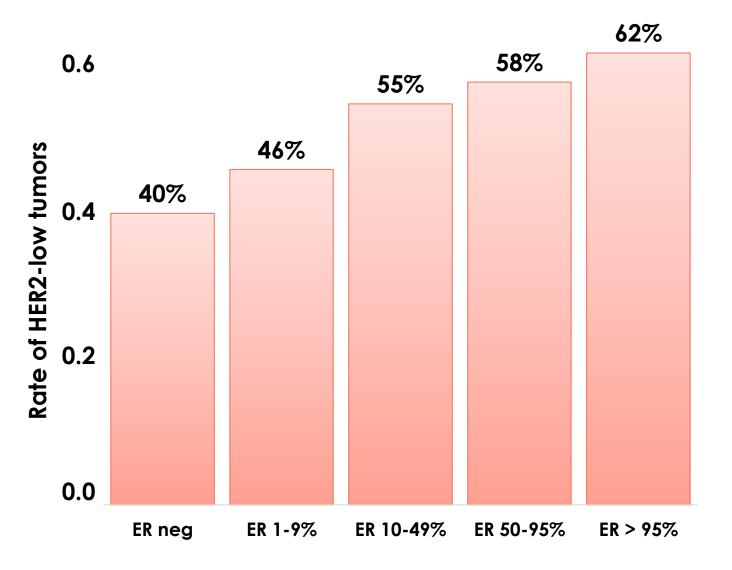
^a Includes response evaluable patients who had ≥1 postbaseline tumor assessment or discontinued treatment. Postbaseline tumor assessments were not yet available for 2 patients at the data cutoff. Three patients were not confirmed to have a target lesion per BICR and, therefore, had a best overall response of non-CR/non-PD. ^b Includes patients with an unconfirmed response but are ongoing treatment.


Krop I, et al. Presented at: SABCS Annual Meeting; December 7-11, 2021; San Antonio, TX. Abstract GS1-05.

TROP2 ADC Trials: 1st Line mTNBC

ASCENT-03 TROPION B-02 Continue treatment until BICR-verified disease progression or unacceptable toxicity **Study Population 1L mTNBC** DATO-DXd Sacituzumab Govitecan 1:1 Primary **Un-treated mTNBC** 10 ma/ka IV Previously untreated • PFS⁺ Not eligible for PD-1/PD-L1 Day 1 and Day 8 of 21-day cycle R locally advanced Tx unresectable, or N=600 metastatic TNBC Endpoints Investigator's choice N = 540 Pacl/nab-pacl,Cape, carbo, eribulin • PD-L1- by 22C3 CPS < 10 1.1 TPC* Secondary randomization or PD-L1+ by 22C3 <u>CPS</u> ≥ • Gemcitabine 1000 mg/m2 with • OS 10 in patients previously Dual Primary Endpoints: PFS/OS carboplatin AUC 2 IV na Days 1 ORR⁺ treated with na aPD-(L)1 DOR[†] and 8 of 21-day cycle agente the curative Paclitaxel 90 mg/m2 IV on Days • TTR⁺ 1, 8, and 15 of 28-day cycle PROs setting Nab-Paclitaxel 100 mg/m2 IV on Safety • \geq 6 months since Days 1, 8, and 15 of 28-day cycle treatment in the *Crossover to SG in eligible patients allowed ⁺ By BICR using RECIST v1.1 curative settina after BICR-verified disease progression.

TROP2 ADC Trials: 1st Line mTNBC, PDL1+

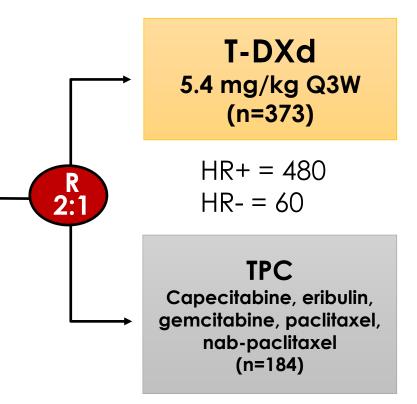

ASCENT-04

ADCs anti HER2 Trastuzumabe Deruxtecan

The rate of HER2-low tumors increased progressively with the increase of ER expression

- ER-negative: 40%
- ER-low (ER 1-9%): 46%
- ER-moderate (ER 10-49%): 55%
- ER-high (ER 50-95%): 58%
- ER-very high (>95%): 62%

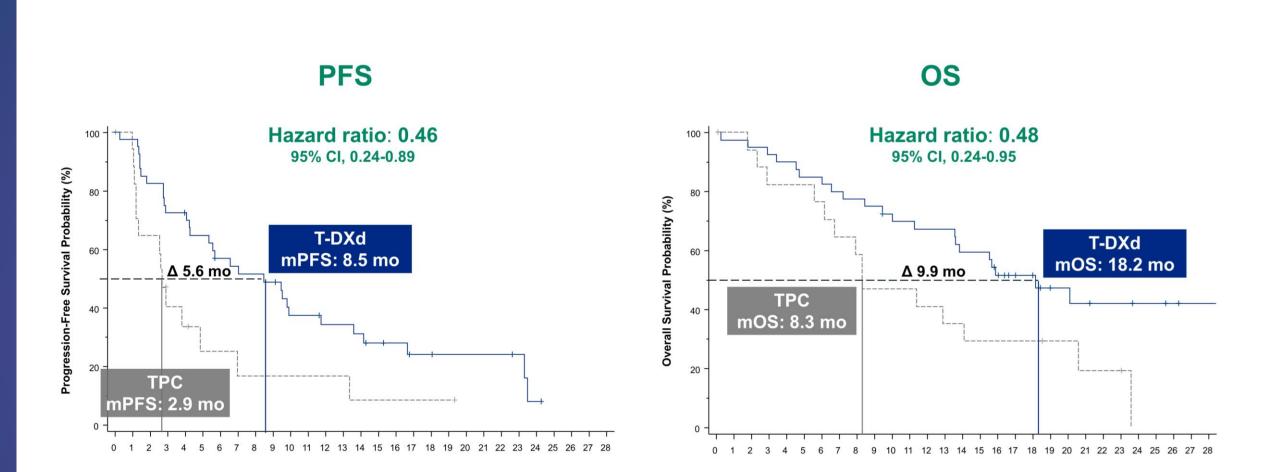
ER estrogen receptor


DESTINY Breast 04

An open-label, multicenter study (NCT03734029)

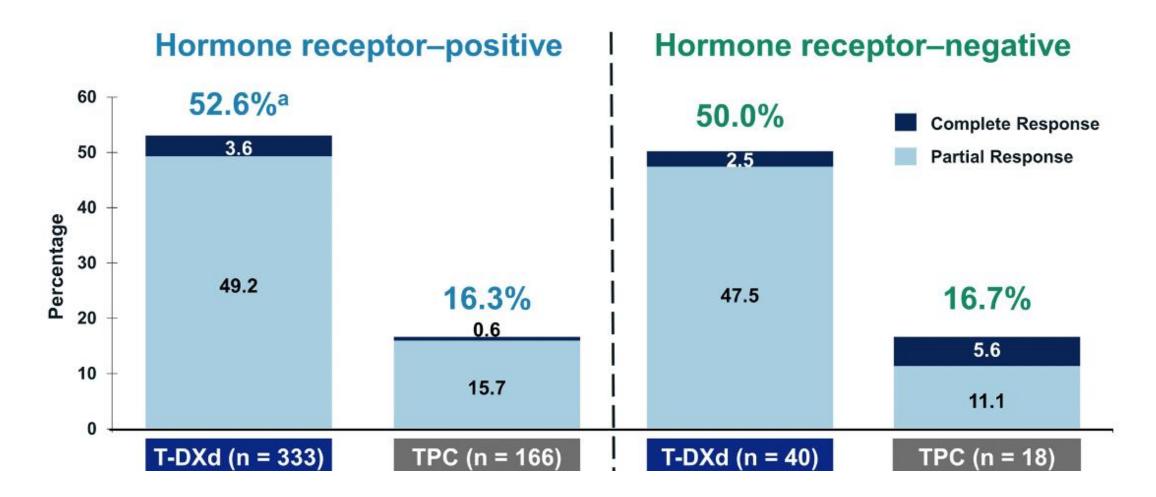
- HER2-low (IHC 1+ vs IHC 2+ / ISH-), unresectable, and/or mBC treated with 1-2 prior lines of chemotherapy in the metastatic setting.
- HR+ disease considered endocrine refractory

Stratification factors


Primary endpoint

• PFS by BICR (HR+)

Key secondary endpoints


- PFS by BICR (all patients)
- OS (HR+ and all patients)

SLP e SG na População Receptor Hormonal Negativo

DB 04 Taxa de Resposta Objetiva

Confirmed Objective Response Rate

Qual será o melhor ADC em TNBC ?

BEGONIA Study

- Metastatic or inoperable locally advanced TNBC
- 1L metastatic setting
- ≥ 12 months since prior taxane therapy

<u>Arm 6</u>: PD11-08 Unresectable, HR-, HER2 low breast cancer [IHC2+/ISH-, IHC 1+/ISH-, IHC 1+/ISH untested]

Durvalumab 1120mg q3 weeks

Trastuzumab deruxtecan 5.4mg/kg q3 weeks

Antibody-Drug Conjugate HER2 antibody + Topo1 inhibitor payload

<u>Arm 7:</u> PD11-09 Unresectable, HR-, HER2- breast cancer

Durvalumab 1120mg q3 weeks

Datopotamab deruxetecan 6mg/kg q3 weeks

Antibody-Drug Conjugate TROP-2 antibody + Topo1 inhibitor payload

BEGONIA Study

TNBC Her2 Low: Trastuzumabe Deruxtecan+Durvalumabe

Confirmed ORR = 33 (56.9%)

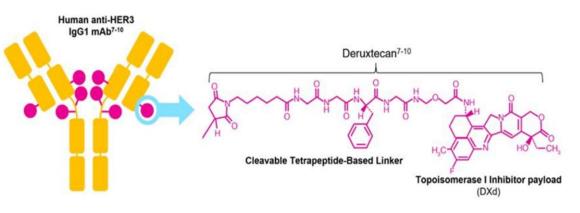
- Complete Response = 1
- Partial Response = 32

Median PFS, months = 12.6 months

TNBC: Dato Deruxtecan +Durvalumabe

Confirmed ORR = 39 (73.6%)

- Complete Response = 4
- Partial Response = 35


Durable Responses with 82% ongoing at data cutoff (median follow-up time 7.2 months)

ADC anti HER3 Patritumabe Deruxtecan

Patritumabe Deruxtecan

- HER3 is iverexpressed in MBC and has been associated with poor clinical outcomes¹⁻⁵
- Patritumab deruxtecan (HER3-DXd; U3-1402) is a novel investigation ADC directed Against HER3 that has 3 componentes:
 - A fully anti-HER3 IgG1 monoclonal antibody (patritumab)
 - A topoisomerase I inhibitor payload, na exatecan derivate
 - A tetrapeptide-based cleavable linker
- Safety and preliminar antitumor activity of DXd were previously reported in this ongoing, phase 1/2 clinical trial (NCT02980341/JapicCTI-163401)⁶

Struture of HER3-DXd (Antibody-Drug Conjugate)

- Humanized anti-HER3 mAB
- Topoisomerase 1 inhibitor, exatecan derivative
- Tetrapeptide-based cleavable linker

1. Mishra R, et al. Oncol ver. 2018;12(1)355; 2. gala K, et al. Clin Cancer Res. 2014;20(6):1410-1416; 3. Mota JM, et al. Oncotarget. 2017;8(51):89284-89306; 4. Mijoo K, et al. Oncotarget. 2014;5(21):10222-10236. 5. Fontanini G, et al. Clin Cancer res. 1998;4(1):241-249; 6. Masuda N, et al. SABCS 2018. Poster PD1-03

HER3 Amplification in solid tumors

High HER3 expression measured by immunohistochemistry has been observed in several studies:

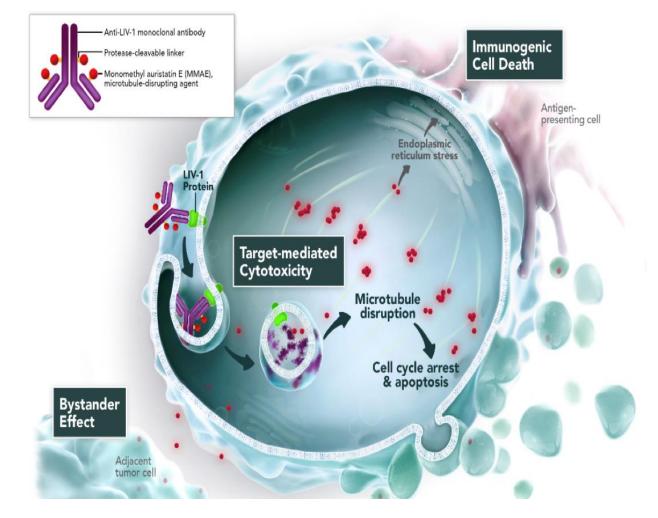
Tumor type	% high HER3 expression. By IHC
Pancreatric	41
Breast	43
Colorectal	17
Gastric	59
Melanoma	65
Ovary	53
Head and neck	9
Cervix	56

Clinical Activity of HER3-DXd Across BC subtypes

Outcomes (BICR per RECIST 1.1)	HR+ / HER2- (n = 113) HER3-High and -Low	TNBC (n = 53) HER3-High	HER2+ (n = 14) HER3-High
Confirmed ORR, % (95% CI)	30.1 (21.8 – 39.4)	22.6 (12.3 – 36.2)	42.9 (17.7 – 71.1)
Best overall response, % PR SD PD NE	30.1 50.4 11.5 8.0	22.6 56.6 17.0 3.8	42.9 50.0 7.1 0.0
DOR, median (95% CI), mo	7.2 (5.3 – NE)	5.9 (3.0 – 8.4)	8.3 (2.8 – 26.4)
PFS, median (95% CI), mo	7.4 (4.7 – 8.4)	5.5 (3.9 – 6.8)	11.0 (4.4 – 16.4)
6-months PFS rate, % (95% CI)	53.5 (43.4 – 62.6)	38.2 (24.2 – 52.0)	51.6 (22.1 – 74.8)
OS, median (95% CI), mo	14.6 (11.3 – 19.5)	14.6 (11.2 – 17.2)	19.5 (12.2 – NE)

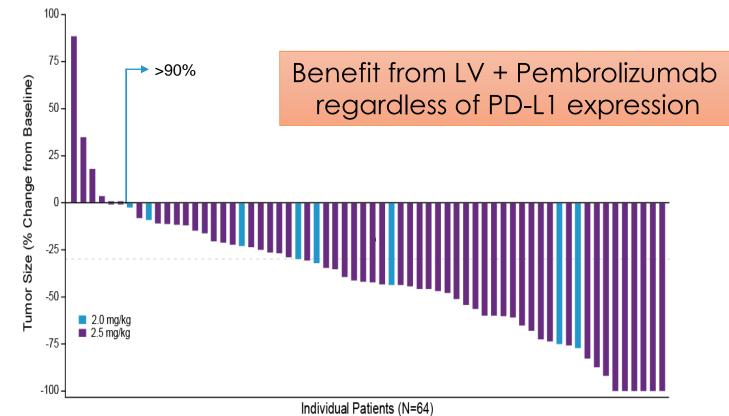
HER3-DXd demonstrated durable antitumor activity across BC subtypes Confirmed ORR for all patients (N = 182), 28.6% (95% CI, 22.1% - 35.7%); median DOR, 7.0 mo (95% CI, 5.5 – 8.5 months)

TNBC 1 to 2 lines of chemotherapy in previous lines of therapy


Krop et al, ASCO 2022

ADC Anti Liv1 Ladiratuzumabe Vedotina

Ladiratuzumab Vedotin (LV)


• LV

- Humanized IgG1 ADC
- Selectively binds to cells expressing LIV-1 (90%+ MBCs)
 - Conjugated to monomethyl auristatin E (MMAE)
- LV-mediated delivery of MMAE drives antitumor activity through
 - Cytotoxic cell killing
 - Inducing Immunogenic Cell Death

LV + Pembrolizumab First line metastatic TNBC

> 90% of subjects achieved tumor reduction

• The efficacy evaluable population includes all treated subjects with at least one evaluable post-baseline assessment according to RECIST v1.1 or who had discontinued from the study (N=69).

• Of the efficacy evaluable population, 5 subjects did not have evaluable response assessments before study discontinuation.

Futuro do Tratamento com ADCs

ADCs with novel Targets in Development for BC

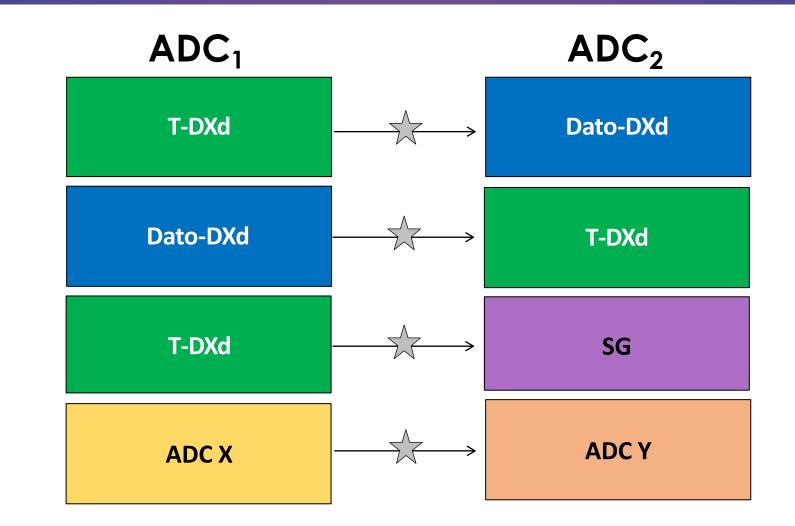
ADC	Target	Payload	Treatment	Phase, NCTID
Ladiratuzumab vedotin (SGN-LIV1a)	LIV1	MMAE	Monotx SGN-LIV1a+atezo SGN-LIV1a+pembro	Ph 1, NCT01969643 Ph 1/2, NCT03424005 Ph 1/2, NCT03310957
Enfortumab vedotin	Nectin-4	MMAE	Monotx	Ph 2, NCT04225117
CX2009	CD166	DM4	Monotx and combination	Ph 2, NCT04596150
Patritumab deruxtecan (U3-1402)	HER3	DXd	Monotx	Ph 1/2, NCT02980341
BA3021-001 (CAB-ROR2 ADC)	ROR2	Undisclosed	Monotx Monotx and PD-L1 inhibitor	Ph 1/2, NCT03504488
Zilovertamab vedotin (VLS-101/MK-2140)	ROR1	MMAE	Monotx	Ph 2, NCT04504916
DS-7300	B7-H3	DXd	Monotx	Phase 1, NCT04145622
AZD8205 XMT-1660	B7-H4	Top1i Microtubule inhibitor	Monotx	Phase 1, NCT05123482 Phase 1, NCT05377996

Next Generation ADCs

	Туре	Key characteristics	Main properties	Some exemples
	Biparatropic-ADCs	mAb targeting 2 epitopes of the same antigen	Improved internalization Higher payload delivery	SW49 (Zw25-ADC targeting ECD2 and ECD4 on HER2)
	Bispecific-ADCs	mAb targeting 2 diferente antigens		MesobsFab (mesothelin and CD16) HER2-PRLR bispecific ADC
	Tumor-specifica activated probody- conjugates	Antibody activation in TME	Targeting "undruggable" targets	BA3021 CX2009
	Small molecule-drug conjugates	mAb replaced by small molecular- weight proteins	Greater and broader tumor tissue penetration	ANG1005 (a brain-penetrating peptide-taxol conjugate)

Non-tumor TARGET ANTIGENS

Туре	Key characteristics	Main properties	Some exemples
Tumor-stroma antigens	Linker cleavage in the TME	Overcome barriers to tumor penetration Reduce risk of developing drug resistance Increase imune response	LRRC15 (ABBV-085)
Immune cells antigens			B7-H3 (DS-7300, MGC018), CD25 (ADCT-301), PD-L1 (PD-L1- Dox)


Sharp et al, 2018; Delbano et al, 2019; Andreev et al, 2017; Hamblett et al, 2018; Kumethekar et al, 2020; Li et al, 2019; deGoeji et al, 2016; Garcia-Corbacho et al, 2017; Boni et al, 2020; Tolcher et al, 2020; Tarantino et al, 2021; Li et al, 2019; deGoeji et al, 2016; Boni et al, 2020; Tolcher et al, 2020; Tarantino et al, 2021; Li et al, 2019; deGoeji et al, 2016; Boni et al, 2020; Tolcher et al, 2020; Tarantino et al, 2020; Centinbas et al, 2022

Novel PAYLOADS

Туре	Key characteristics	Main Properties	Some exemples
Tumor-specific pathways	Tyrosinase-kinase inhibitors, apoptotic- pathway targeting agentes	Reduce off-target toxicities	Inhibiting BCL-XL (ABBV-155)
Immunomodulatory payloads	Immune-stimulant molecules	Revert "cold" tumors into "hot" tumors	Chemokines, STING agonists, Toll-like receptor agonists
Radionuclide payloads	Radioactive payloads	Selectively deliver radioactive agents	90Y-FF-21101


Sharp et al, 2018; Delbano et al, 2019; Andreev et al, 2017; Hamblett et al, 2018; Kumethekar et al, 2020; Li et al, 2019; deGoeji et al, 2016; Garcia-Corbacho et al, 2017; Boni et al, 2020; Tolcher et al, 2020; Tarantino et al, 2021; Li et al, 2019; deGoeji et al, 2016; Boni et al, 2020; Tolcher et al, 2020; Tarantino et al, 2021; Li et al, 2019; deGoeji et al, 2016; Boni et al, 2020; Tolcher et al, 2020; Tarantino et al, 2020; Centinbas et al, 2022

Will Need to Understand Sequencing of ADCs

Need comparison and sequencing studies

The Emerging Problems of Selection and Sequencing

- Avanços tecnológicos nos trouxeram para a era da terapia com ADCs
- Possuem eficácia melhorada em relação à quimioterapia clássica
- Novos agentes têm aplicabilidade clínica mais ampla, com potenciais alvos únicos, prometendo mais progresso
- Para avançar no campo, precisamos de biomarcadores de resposta, testes de sequenciamento bem elaborados e uma compreensão da resistência para realmente"personalizar" terapia com ADCs

dgagliato@gmail.com

A Beneficência Portuguesa de São Paulo